

Magneto Theranostics

UNIL | Université de Lausanne

Targeted Nanoparticles for Imaging and Treatment of Prostate Cancer Metastases in Lymph Nodes

Stella-Saphira Ehrenberger, Emmanuelle Sublet, Gerrit Borchard, Olivier Jordan

School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland

RTD 2013

FNSNF

Nanoparticle core

Iron oxide nanoparticles (IONs)

Shorten T2 relaxation of surrounding tissue \rightarrow MRI contrast agent

Dissipate heat when exposed to an alternating magnetic field \rightarrow Hyperthermia

Combining IONs ability for hyperthermia and MR imaging is highly valuable for **theranostic** (therapy and diagnostic) applications.

The IONs are coated with different biocompatible small molecules.

Targeting ligands

The coated IONs are then functionalized with different ligands [1-2]:

Small molecule	Aptamer	Antibody
320 Da	18000 Da	150000 Da

Aptamers are short segments of DNA or RNA binding to a specific target. Their smaller size compared to antibodies, which allows faster target recognition, and higher binding affinity compared to small molecules [3] make them interesting for specific targeting:

Target

The prostate specific membrane antigen (PSMA) is a transmembrane receptor highly overexpressed in prostate cancer.

Targeting PSMA – *In-vitro* studies

Fluorescence microscopy imaging: The **aptamer** is binding to **PSMA-positive LNCaP** cells (human prostate cancer cells from lymph node metastasis) and not to PSMA**negative PC3 cells** (human prostate cancer cells):

Figure 1: LNCaP: Fluorescently labelled aptamer-Cy5 was detected after incubation and washing of cells (B). Superposition with image A (fluorescently stained cell membrane) shows colocalisation of the aptamer and the cell membrane.

Cu-free click chemistry

- ✓ highly selective and efficient
- ✓ mild reaction conditions (aqueous medium, RT)

With a zeta potential of ~ -30 mV and a size of

Figure 2: PC3: Beside the fluorescently stained cell membranes (A), almost no aptamer-Cy5 was detected (B, superposed: C) for PSMA-negative PC3 cells.

Testing of cell line for *in-vivo* **studies**

The aptamer is also binding to and internalized in the metastatic rat prostate cancer cells MAT-LyLu (PSMA status unknown) which are of high interest as *in-vivo* model for detection of lymph node metastases (confocal scanning laser microscopy):

Figure 3: Z-stacks show internalization of aptamer-Cy5 in MAT-LyLu cells (A after 1h, B after 4h) at 37°C.

C: LNCaP cells with aptamer-Cy5 bound on the surface and slightly internalized at 20°C.

Binding of the aptamer to a specific binding site on the surface of MAT-LyLu cells was confirmed by saturation binding ($K_D = 105.8$ nM) and competitive binding assays:

less than 100 nm, aptamer-functionalized IONs show promising poperties for lymph node targeting.

ഗ് - ATP coating Cysteine coating Zeta potential after each reaction step

Conclusions and Outlook

- ✓ Aptamer specifically binds PSMA+ cancer cells
- \checkmark Aptamer has affinity for a rat cancer cell line that can develop prostate cancer metastases *in-vivo*
- Successful functionalization of IONs with a PSMA-targeting aptamer
 - Nanoparticles are also functionalized with a PSMA-targeting small molecule and antibody

Nanoparticles' binding ability and selectivity are now compared *in-vitro*.

Saturation binding assay: Incubation of MAT-LyLu cells with increasing concentrations of Cy5-labelled aptamer

Competitive binding assay: Incubation of MAT-LyLu cells with Cy5labelled aptamer and increasing concentrations of unlabelled aptamer.

ACKNOWLEDGMENTS

The authors thank D. Bonvin, Dr. M. Mionic Ebersold and Prof. H. Hofmann (EPFL) for providing the iron oxide nanoparticles.

REFERENCES

[1] Lupold SE et al. Cancer Res 2002; 62: 4029-33 [2] Maresca KP et al. J Med Chem 2009; 52: 347-57 [3] Keefe AD et al. Nat Rev Drug Discov 2010; 9: 537-50