

striss sciencine initiative in neurity peculity pentition of systems

Stroke Volume Monitoring via Electrical Impedance Tomography (EIT)

Fabian Braun^{1,2,‡}, Martin Proença^{1,2,‡}, Josep Solà¹, Mathieu Lemay¹, Jean-Philippe Thiran^{2,3}

¹Systems Division, Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland (^{*}shared first authorship) ²Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ³Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland

Introduction

Electrical Impedance Tomography (EIT) is a functional medical imaging technique successfully used to monitor ventilation [1]. Conductivity images enable a regional analysis of lung tissue. Besides that, EIT is also an appealing candidate to measure cardiovascular-related changes [2].

Compared to other medical imaging modalities, EIT has the advantages of being non-invasive, low-cost and enables continuous bedside monitoring.

Stoke Volume (SV) via EIT

The potential to estimate hemodynamic parameters – such as blood pressure or stroke volume – from cardiovascular EIT images was shown in different previous studies [3-6]. In the current work we concentrate on the non-invasive assessment of stroke volume in humans. This approach exploits the impedance changes in the heart region and relates the maximal impedance change ΔZ_{Max} to SV.

Bio-Impedance Simulations

To show the feasibility of EIT-based SV monitoring, impedance simulations were performed. To this end, a previously reported **4D bio-impedance model** [7] of a human thorax was adapted to simulate different SV.

1. Different SVs were simulated by altering the ventricular volumes:

- 11 different SVs (46 to 106 ml) simulated
- Six EIT belts with were placed at the level of the heart
- Strong correlation (R>0.99) between ΔZ_{Max} and SV_{Ref} is observed

2. The influence of longitudinal (up/down) and rotational (left/right)

4D Heart Model

- Artificial modulation of ventricular volumes
- Simulate different stroke volumes (SV)

4D bio-impedance model of the human thorax

Clinical Study

The concept of EIT-based SV monitoring is currently being tested in a **clinical trial** in **humans**:

- Patients undergoing surgery of cardiovascular system
- Reference SV measured with right heart catheter
- Compared to EIT SV estimates assessed non-invasively
- Measurements of SV before and after injection of anesthetics

electrode shifts on EIT-based SV estimation was investigated.

	Down		Up		Left			Right		
Shift (cm)	1.8	3.5	1.8	3.5	1.3	2.7	4.0	1.3	2.7	4.0
Abs. Error (ml)	7±2	12±4	-10±5	-21±10	4 ± 4	11±10	20±16	-1±3	1±5	5±8
Rel. Error (%)	10±4	17±5	-14±7	-30±13	6±6	16±14	28±23	-1±5	2±7	7±11

- The **displacement** of **EIT electrodes** can induce **significant errors** severely impairing the estimation of absolute SV values.
- Results call into question the intra-subject repeatability and the intersubject comparability of absolute SV values
- However, in all cases the trending ability was not impaired

References

[1] Adler, A. et al., Physiological Measurement 33(5), 679-694 (2012).
[2] Frerichs, I. et al. Curr Opin Crit Care 20, 323–332 (2014).
[3] Vonk-Noordegraaf, A., et al., Physiological Measurement 21(2), 285-293 (2000).
[4] Pikkemaat, R. et al., Anesthesia & Analgesia, *in print* (2014).
[5] Solà, J. et al., Medical & Biological Engineering & Computing 49, 409-415 (2011).
[6] Maisch, S. et al., Critical Care Medicine 39, 2173-2176 (2011).
[7] Braun, F., et al., Physiological Measurement 36.6 (2015): 1147.

CSEM SA

Rue Jaquet-Droz 1

CH-2002 Neuchâtel

T +41 32 720 5111

