

swiss scientific initiative in health / security / environment systems

Adaptive Sampling for Characterizing Sensor Accuracy and Sensor Selection

Learning & **Adaptive Systems** Adish Singla, Andreas Krause

Learning & Adaptive Systems Group, ETH Zurich

ETHzürich

FNSNF

Community Sensing

Estimate spatial phenomenon

Community owned devices

Challenges

Typical sensors for crowdsensing can't be

- Low-cost sensors
- Dense sensing network

Community Seismic Network (CSN) Earthquake monitoring Pasadena, California

OpenSense 2: Air quality monitoring Lausanne/Zurich

Mobile Millenium: Traffic monitoring Berkeley, California

continuously monitored

- Concerns about privacy, bandwidth, energy, etc.
- Heterogeneity and unknown sensors' accuracies

Goal

- Optimally select
 - which sensors to query
 - which data to retrieve
- Balancing utility and sensing cost

Exploration vs. exploitation tradeoff

RTD 2013

Sensor Selection Problem

Characterizing Sensor Accuracy

When accuracy is known

- Set of sensors V with known accuracy
- Utility of selected sensors $S \subseteq V$ is given by f(S)
- f is submodular set function

gain of adding 🛄 to a smaller set

Realistic settings: Unknown accuracy

- Equivalent to unknown utility function f
- Estimate gain $f(a|S) = f(S \cup \{a\}) f(S)$ via sampling
- Given noisy estimates, need to select sensors, i.e. compare

- Notion of diminishing returns
- Captures many complex utility functions

[Krause and Guestrin'07; Nushi, Singla et al.'15]

• Marginal gain: $f(a|S) = f(S \cup \{a\}) - f(S)$

f(a|S) vs. f(b|S)

Main research problem addressed

• Provably optimal adaptive sampling techniques for maximizing unknown submodular function [Singla et al. AAAI'16]

Key Ideas for Adaptive Sampling

Existing approach: Uniform sampling

- Sample all sensors uniformly and non-adaptively
- Estimate f(a|S) up to desired confidence ϵ
- High sample complexity (i.e. the number of queries performed or samples acquired)

Key ideas to reduce sample complexity

- Estimate marginal gains only up to the confidence needed to select next best sensor
- Sufficient to select a sensor from a small subset of top-L best instead of the best sensor (where L is adaptively chosen)

Theoretical Guarantees

Experimental Results

Theorem I – Utility acquired

• Tight guarantees (lower bounds) on the utility acquired

Theorem 2 – Sample complexity

• Tight guarantees (upper bounds) on the sampling cost

Formal statements and technical details in Singla et al. AAAI'16

Sample complexity (Total number of queries)

Exploration across sensors (Distribution of queries in one iteration)