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4 Community Sensing Sensor Selection Problem O
Estimate spatial phenomenon Challenges

. Community owned devices . Typical sensors for crowdsensing can’t be
. Low-cost sensors continuously monitored
. Dense sensing network . Concerns about privacy, bandwidth, energy, etc.

: L . Heterogeneity and unknown sensors’ accuracies
Community Seismic

Network (CSN)
Earthquake monitoring Goal
Pasadena, California

. Optimally select

— which sensors to query

—which data to retrieve

OpenSense 2:
Air quality monitoring
Lausanne/Zurich

Traffic monitoring . Balancing utility and sensing cost

Berkeley, California

Exploration vs. exploitation tradeoff
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Characterizing Sensor Accuracy

When accuracy is known Realistic settings: Unknown accuracy
. Set of sensors |/ with known accuracy . Equivalent to unknown utility function f
. Utility of selected sensors S C Vis given by f(5) . Estimate gain f(a|S) = f(SU{a}) — f(S) via sampling
. [ is submodular set function gain of adding [ ] to a smaller set . Given noisy estimates, need to select sensors, i.e. compare

— Notion of diminishing returns F{SE} - F{E,'Q} f(alS) vs. F(b]9)

— Captures many complex utility functions > .
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g Key Ideas for Adapti ' A
y Ideas for Adaptive Sampling

Existing approach: Uniform sampling
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. Sample all sensors uniformly and non-adaptively
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. High sample complexity (i.e. the number of queries performed = g g g
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Key ideas to reduce sample complexity T e e -
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. Esltlmate mat:gmal gains only up to the confidence needed to Unknown NoN-ADAPTIVE ADAPTIVE.BEST ADAPTIVE.TOPL
select next best sensor utilities (Uniform) (Key Idea#|) (Key Idea#?2)
. Sufficient to select a sensor from a small subset of top-L best
_ instead of the best sensor (where L is adaptively chosen) Y
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Variance 62 in the feedback values Sensor indices (ordered by #queries)
Formal statements and technical details in Singla et al. AAAI’l 6 Sample complexity Exploration across sensors
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