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Characterizing Sensor Accuracy

Community Sensing
Estimate spatial phenomenon
●  Community owned devices

●  Low-cost sensors

●  Dense sensing network

 
 

Community Seismic
Network (CSN)
Earthquake monitoring 
Pasadena, California 

OpenSense 2: 
Air quality monitoring
Lausanne/Zurich

Mobile Millenium: 
Traffic monitoring
Berkeley, California

Sensor Selection Problem

Challenges
●  Typical sensors for crowdsensing can’t be 

continuously monitored
●  Concerns about privacy, bandwidth, energy, etc.

●  Heterogeneity and unknown sensors’ accuracies

Goal
●  Optimally select

– which sensors to query
– which data to retrieve

●  Balancing utility and sensing cost

Exploration vs. exploitation tradeoff

CrowdSense

When accuracy is known
●  Set of sensors      with known accuracy

●  Utility of selected sensors            is given by 

●     is submodular set function 

– Notion of diminishing returns
– Captures many complex utility functions 
  [Krause and Guestrin’07; Nushi, Singla et al.’15] 

●  Marginal gain:

 

V

f

S ✓ V f(S)

f(a|S) = f(S [ {a})� f(S)

Realistic settings: Unknown accuracy
●  Equivalent to unknown utility function 

●  Estimate gain                                         via sampling

●  Given noisy estimates, need to select sensors, i.e. compare

Main research problem addressed
●  Provably optimal adaptive sampling techniques for maximizing unknown 

submodular function [Singla et al.  AAAI’16]

 

f

f(a|S) = f(S [ {a})� f(S)

f(a|S) vs. f(b|S)

Key Ideas for Adaptive Sampling
Existing approach: Uniform sampling
●  Sample all sensors uniformly and non-adaptively 

●  Estimate           up to desired confidence

●  High sample complexity (i.e. the number of queries performed   
or samples acquired)

Key ideas to reduce sample complexity
●  Estimate marginal gains only up to the confidence needed to 

select next best sensor

●  Sufficient to select a sensor from a small subset of top-L best 
instead of the best sensor (where L is adaptively chosen)

 
Theoretical Guarantees

Unknown  
utilities 

NON-ADAPTIVE

(Uniform)
ADAPTIVE-BEST

(Key Idea#1)
ADAPTIVE-TOPL

(Key Idea#2)

✏f(a|S)

Theorem 1 – Utility acquired
●   Tight guarantees (lower bounds) on the utility acquired

Theorem 2 – Sample complexity
●  Tight guarantees (upper bounds) on the sampling cost

Formal statements and technical details in Singla et al.  AAAI’16
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Experimental Results


