

swiss scientific initiative in health / security / environment systems

## **OpenSense2** FNSNF RTD 2013

## **Pre-Deployment Testing, Augmentation and Calibration of Cross-Sensitive Sensors**

Balz Maag, Olga Saukh, Zimu Zhou, David Hasenfratz\*, Lothar Thiele



Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland \* Sensirion AG, Staefa, Switzerland



Low-cost Gas Sensors

• Measure concentration of major pollutants:



Sensor Calibration

Simple sensor calibration

Sensor array calibration

- $NO_2$ , CO,  $O_3$ ,  $PM_{10}$  etc.
- Cheap, small packaging, low-power consumption
- Challenges:
  - Affected by environmental changes, e.g. temperature
  - Low selectivity: **cross-sensitive** to multiple pollutants
  - Primarily designed for higher concentrations than in outdoor air, e.g. car industry

α-sense CO-B4

MiCS-OZ-47  $O_3$ 

Reference Sensor *s*<sub>1</sub>

Calibrate **single** sensor to single reference using Ordinary Least-Squares (OLS):  $r = \beta_0 + \beta_1 \frac{s_1}{s_1} + \varepsilon$ 



Calibrate **multiple** sensors to **single** reference using *Multiple* Least-Squares (MLS):  $r = \beta_0 + \beta_1 \frac{s_1}{s_1} + \beta_2 \frac{s_2}{s_2} + \beta_3 \frac{s_3}{s_3} + \varepsilon$ Used to compensate for cross-sensitivities

Pre-deployment Testing How can we uncover all cross-sensitivities and environmental dependencies of a low-cost sensor?  $\rightarrow \hat{u} = Explained$  part of sensor signal  $r_i \in R$ **Multiple Least-**Standardization . . . Error  $\varepsilon = Unexplained$  part Squares  ${\cal E}_P$ <u>decomposition</u>  $\mathcal{E}_N$ 



Find combination of references that best explains the sensor-under-test by quantifying the amount of captured/uncaptured cross-sensitivities and sensor noise

## Experimental Evaluation

Testing of various low-cost sensors at a governmental high-quality station (NABEL) in Dübendorf, Switzerland

 $\alpha$ -sense NO<sub>2</sub>-B4 Sensor SGX Sensortech MiCS-OZ-47 O<sub>3</sub>

a-sense CO-B4 Sensor

## **Optimized Sensor Array**

Compensating for cross-sensitivities and environmental dependencies improves calibration accuracy and stability of low-cost sensors

.....

CARBON MONOKEE CO-B4 1625134

NITROGEN DIC NO2-A1 6515 072

 $NO_2$ 

CO

- Augmented sensor array
  - SGX Sensortech MiCS-OZ-47 O<sub>3</sub>
  - $\alpha$ -sense NO<sub>2</sub>-B4



• CO-B4 and SGX O<sub>3</sub> both depend on environmental effects

- α-sense CO-B4 Sensirion SHT H & T  $\bullet$
- Calibration accuracy and stability



 Smaller average calibration error when calibrating sensor array (MLS) compared to simple sensor calibration (OLS) • Longer stability of sensor array calibration parameters, i.e. MLS requires less re-calibration compared to OLS

OpenSense Zurich Website: www.opensense.ethz.ch