Limiting the Influence of Low Quality Information in Community Sensing

Introduction

A big issue in community sensing is that malicious agents can insert false information. This is usually addressed using reputation systems that estimate the credibility and punish misinformation. We present a novel reputation system that for the first time allows to bound the negative impact that malicious sensors can have on the learned outcome.

The Setting

CS Influence Limiter (CSIL)

The sensing scenario with *online information fusion*:

- Initially, the center has prior information about air pollution over an urban area.
- Crowd-sensors report their measurements sequentially. Each report Y is merged with the current pollution map P using pollution model M.

for t = 1 to t = T do: foreach Sensor s do: $P_{s,t}^{old} = P;$ $P_{s,t}^{new} = Update(P, Y_{s,t});$ if rand(0, 1) < $\rho_{s,t}/(\rho_{s,t} + 1)$ then: $P = P_{s,t}^{new};$

> When X_+ is received: $score_{s,t} = S(P_{s,t}^{new}, X_t) - S(P_{s,t}^{old}, X_t);$ $\rho_{s,t} = \rho_{s,t} * (1 + 0.5 * score_{s,t});$

Information fusion: stochastic and reputation dependent **Reputation update:** exponential increase/decrease of reputations

Properties

Theorem 1: (Query Complexity) The number of queries to a black box model M of the CSIL algorithm in one time period t is O(n), where *n* is the number of reported values.

- When trusted sensor reports X_t , the center can evaluate the reports of crowd-sensors using a scoring function S. This corresponds to one period of sensing *t*.
- The crowd sensing process then continues in the same manner until the period t = T, which is called sensing time.

Goal: Limit the overall negative influence that a sensor can have on the fused result.

Our Approach: Track the quality of reported information using a reputation system and discard information coming from sensors with low reputations. Reward a sensor based on its marginal contributions.

Inefficiency Measures

Expected myopic impact – measures the influence of a sensors: \mathbf{V} **D**r(undate), $[\mathbf{C}(\mathbf{D}^{new} \mathbf{V}) \quad \mathbf{C}(\mathbf{D}^{old} \mathbf{V})]$

Theorem 2: (Limited Damage) The expected total myopic impact of sensor s is in the CSIL algorithm bounded from below by $\Delta_s > 2\rho_0$, where ρ_0 is the initial reputation of sensor s.

Theorem 3: (Bounded Information Loss) Informally, the expected information loss of the CSIL algorithm for potentially discarding the reports of an accurate sensor is bounded from above by a constant.

Theorem 4: (Informed Reporting) If a sensor s maximizes its expected score, then it also maximizes its expected impact.

Experimental Analysis

Baseline: Beta reputation system with trustworthiness determined by a fixed threshold. **Sensors**: 25% honest; 75%

$$\Delta_s = \sum_{t=1}^{t} \Delta_{s,t} = \sum_{t=1}^{t} PI(upaale) \cdot [S(P_{s,t}, \Lambda_t) - S(P_{s,t}, \Lambda_t)]$$

Expected information loss – measures the amount of discarded information from non-malicious sensors:

$$IL_{s} = \sum_{t=1}^{T} (1 - \Pr(update)) \cdot [S(P_{s,t}^{new}, X_{t}) - S(P_{s,t}^{old}, X_{t})]$$

Related Work

- The influence limiter: Provably manipulation-resistant recommender system, P. Resnick and R. Sami, 2007.
- A robust reputation system for mobile ad-hoc networks, S. Buchegger and J.-Y. L. Boudec, 2003.
- The beta reputation system, A. Josang and R. Ismail, 2002.

malicious - 4 different misreporting strategies. **Quality measure**: Average regret (over time) for not knowing which sensors are honest (the lower, the better).

Results: CSIL outperforms the baseline and satisfies the no-regret property.

Artificial Intelligence Laboratory Goran Radanovic and Boi Faltings {firstname.lastname}@epfl.ch