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An in vitro epithelium that bears the
mechanobiological hallmarks of living tissue
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UND DES KANTONS AARGAU

Basement membranes (BM) show high abundance in the human body. By lining endothelial and epithelial lumina (e.g. blood vessels and mammary glands), they provide an

interface between populating cells and the underlying connective tissue. Besides constituing a substrate for epithelial and endothelial cells, respectively, these highly conserved

structures also work as mechanical barriers against cancer cell propagation'. Breast cancer initiation prominently takes place in mammary ducts or lobules. Breaching the basement

membrane allows cancer cells to disperse throughout the body and disseminate by forming metastases®. Understanding this early process in metastatic cancer progression requires a

better insight into the characteristics of both BMs and the evading cancer cells. The inner limiting membrane (ILM) extracted from the human eye has turned out to be a valuable

tool to bring epithelial cell culturing closer to in vivo conditions. Culturing cells on top of the ILM under hypoxic conditions leads to a significantly softened phenotype which

correlates with previous findings in vivo and in situ, postulating 10% of the total cell population within a malignant lesion in human breast to be remarkably soft and hypoxic’.
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Various microscopy techniques, ranging from mechanical to optical approaches, allow us to gain a deeper insight into BMs as structures fulfilling crucial functions within the

human body. Staining for various BM constituents followed by optical imaging and atomic force microscopy allowed us to asses a multi-facetted understanding of our in vitro

tissue model.
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Combining AFM and fluorescence microscopy we visualize and assess stiffness of BM components in situ
using tissue sections. With this approach we show that BMs of human mammary ducts and kidney distal
tubules are 30 to 100 kPa stiff which corresponds to the stiffness values of ILM.

BMs and the organization of epithelial architecture
in human tissue
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Basement membranes line epithelial organs throughout the body and serve as a substrate for epithelial
cell layers. Frozen sections of human breast tissue stained for laminin, DAPI and various markers of
epithelial polarity, barrier and cytoskeletal components as well as integrins provide us with information
about cellular organization.

The mechanical
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INHIBITING LAMININ AND a6B4 INTEGRINS REVEALS THE
FUNCTIONAL ROLE OF BMs FOR EPITHELIAL FORMATION

Blocking the B4 integrin leads
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Conclusion

Basement membranes in tissues are organized in distinct epithelial and stromal
layers that consist of laminin and collagen 1V respectively. Epithelial cells cultured
on native BMs exhibit mechano-cellular properties that are distinct from equivalent
cells grown on reconstituted BMs (i.e., Matrigel). We show that the mechanical
cues can have completely different effects on cell behavior, depending on the
structural and mechanical phenotype of the substrate. The direct interactions
between the B4-integrin receptor and the ILM laminin that in turn alter intracellular
signaling and cytoskeleton reorganization are the essential features of native BM
providing physiological microenvironment for epithelia.
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