

Fault detection and faulted line identification in power systems using synchrophasor-based real-time state estimation

M. Pignati, L. Zanni, P. Romano, R. Cherkaoui, M. Paolone Distributed Electrical System Laboratory, EPFL

The problem

Existing protection schemes are *specific* according to:

- Voltage level;
- Type of network;
- Possible fault types;
- Presence of renewables, etc...

The idea

- State estimation output is not affected by these issues;
- Synchronized phasor measurements reporting rates and low have high latency.

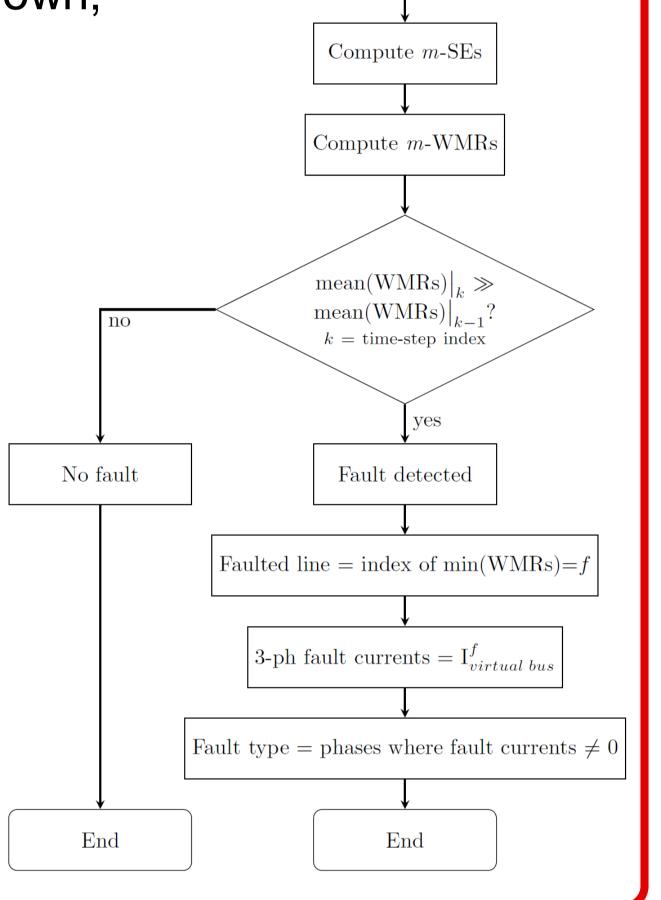
The solution

scheme based protection Unique synchrophasor-based state estimators.

Method

Assumptions:

Knowledge of network admittance matrix (**H** exact);


Measurement noise covariance **R** known;

- PMUs installed in every bus;
- Bad data removed a-priori.

Procedure:

For every new set of measurements and for every j-SE, with $j \in [1, ..., m]$

$$\hat{\mathbf{x}}_j = \mathbf{G}^{-1} \mathbf{H}_j^T \mathbf{R}^{-1} \mathbf{z}$$
 $\hat{\mathbf{z}}_j = \mathbf{H}_j \hat{\mathbf{x}}_j$
 $\mathbf{WMR}_j = \sum_{i=1}^{D} \frac{|\mathbf{z}^i - \hat{\mathbf{z}}_j^i|}{\sigma_{\mathbf{z}^i}}$

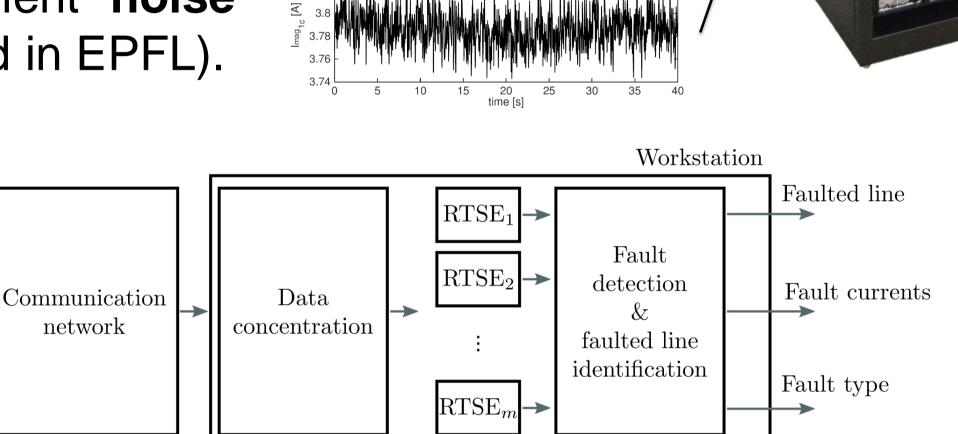
Start

Real-time validation

Implementation:

- Real-time simulator to reproduce real-network behavior in real-time;
- Real PMU algorithm (used in EPFL) to generate the measurements;
- Real measurement **noise** model (obtained in EPFL).

 \rightarrow PMU₁ \rightarrow

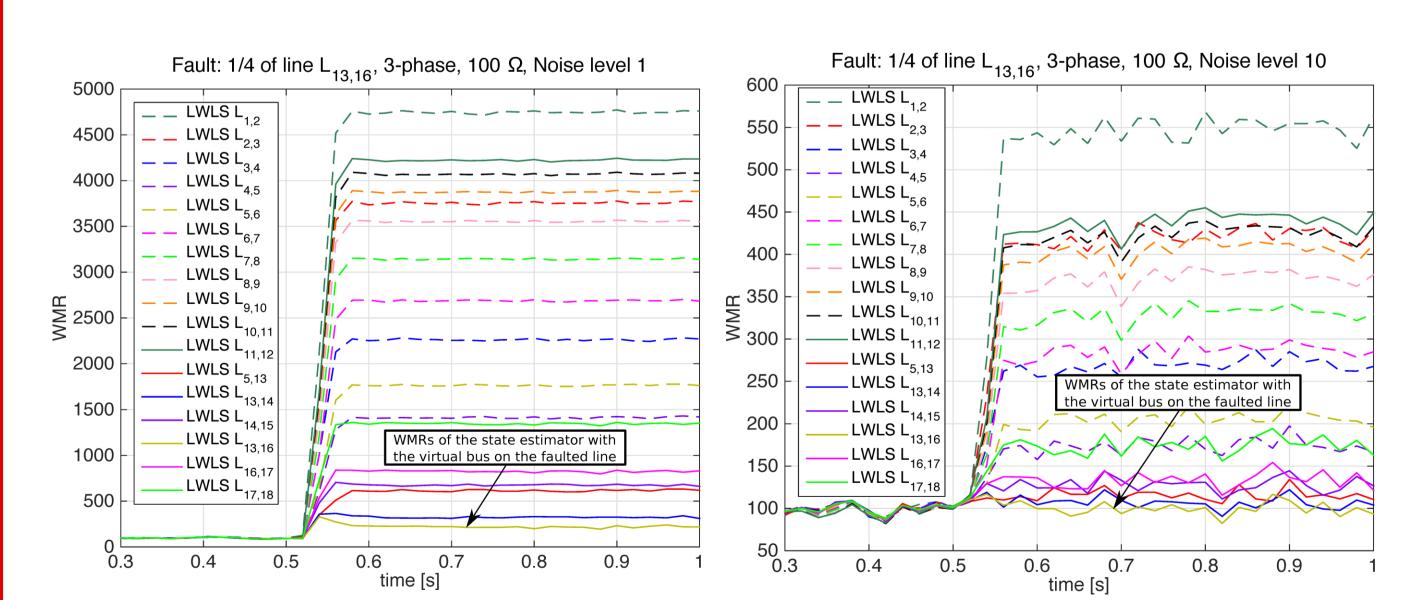

Electrical

 Grid

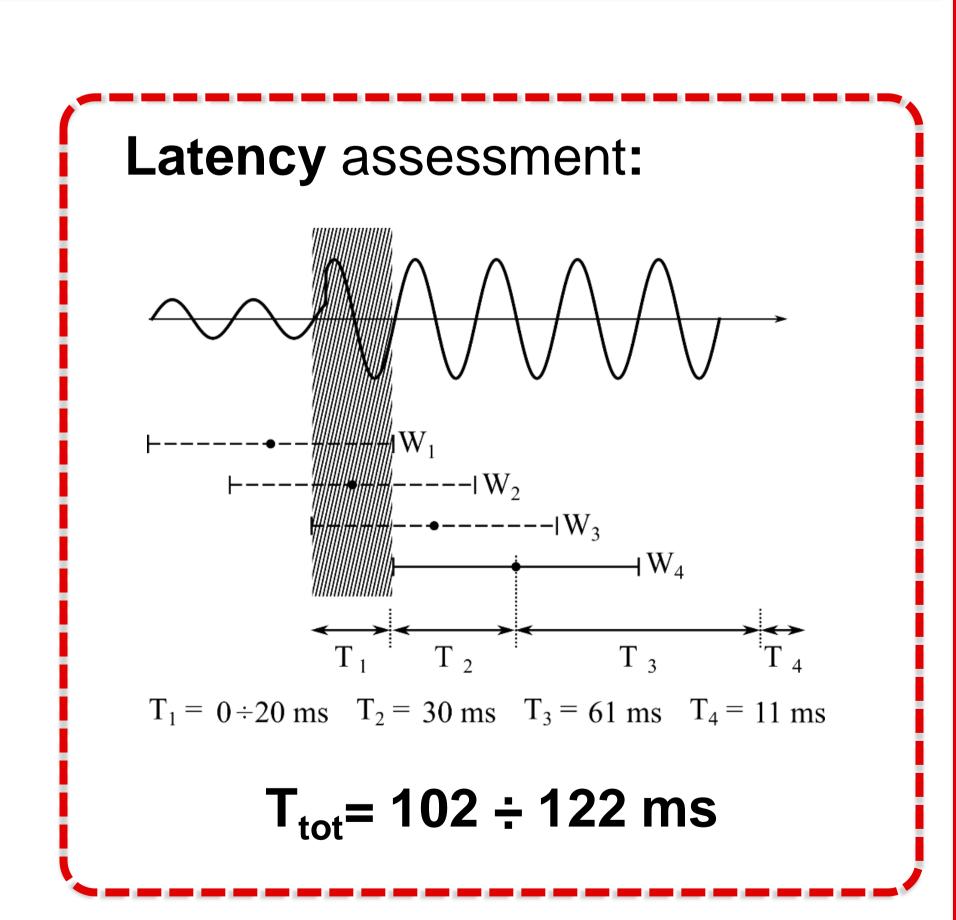
 \rightarrow PMU₂ \rightarrow

 $\rightarrow \mathrm{PMU}_N \rightarrow$

network



15 14


Results

Extensively tested for:

- Real distribution or transmission test network;
- Low, high or very high **impedance** faults (1 Ω , 10 Ω , 1000 Ω);
- Several fault types and fault locations;
- Earthed or unearthed **neutral**;
- Large presence of distributed generation and different operating conditions.

		1-рн-то т, 1 Ω	GROUND	TRANSM		: 1-PH-TC Γ, 100 Ω) GROUNI
Fault Position		Noise Level		Fault Position		Noise Level	
		1	10	T dail T o	7.5741-011	1	10
$L_{1,3}$	1/4	100%	100%	$L_{1,3}$	1/4	100%	99.67%
	1/2	100%	100%		1/2	100%	100%
$L_{3,4}$	1/4	100%	100%	$L_{3,4}$	1/4	100%	99.99%
	1/2	100%	100%		1/2	100%	100%
$L_{1,5}$	1/4	100%	100%		1/4	100%	91.35%
				1/1 5			
-1,0	1/2	100%	100%	$L_{1,5}$	1/2	100%	100%
	UTION:	3-PH FA			UTION:	3-рн ғац	
DISTRIB	UTION:	3-PH FA	ULT, 1 Ω	DISTRIE	UTION:	3-рн ғац	JLT, 100
DISTRIB	UTION:	3-PH FA	ULT, 1 Ω	DISTRIE Fault P	UTION:	3-PH FAU	ULT, 100 e Level
Distrib	SUTION:	3-PH FA	ULT, 1 Ω Level 10	DISTRIE	OUTION:	3-PH FAU Nois 1	ULT, 100 e Level
DISTRIB Fault Po	osition 1/4	3-PH FAI Noise 1 100%	ULT, 1 Ω Level 10 100%	Fault P	osition	3-PH FAU Nois 1 100%	JLT, 100 e Level 10 99.27% 99.85%
DISTRIB	osition 1/4 1/2	3-PH FAI Noise 1 100% 100%	ULT, 1 Ω Level 10 100% 100%	DISTRIE Fault P	osition 1/4 1/2	3-PH FAU Nois 1 100% 100%	JLT, 100 e Level 10 99.27%
DISTRIB Fault Po	osition 1/4 1/2 1/4	3-PH FAI Noise 1 100% 100% 100%	ULT, 1 Ω Level 10 100% 100%	Fault P	osition 1/4 1/2 1/4	3-PH FAU Nois 1 100% 100% 100%	JLT, 100 e Level 10 99.27% 99.85% 98.54%

Future steps

- Validation in the **real field**;
- Localization of the fault along the line with an offline procedure;
- Study of the robustness of the method with respect to errors in the input parameters.

[1] M. Pignati; L. Zanni; P. Romano; R. Cherkaoui; M. Paolone, "Fault Detection and Faulted Line Identification in Active Distribution Networks using Synchrophasors-based Real-Time State Estimation," in IEEE Transactions on Power Delivery

[2] P. Romano, M. Pignati and M. Paolone, "Integration of an IEEE Std. C37.118 compliant PMU into a real-time simulator," PowerTech, 2015 IEEE Eindhoven, Eindhoven, 2015.