

Undetectable PMU Timing-Attack on Linear State-Estimation by Using Rank-1 Approximation

> S. Barreto, M. Pignati, G. Dan, M. Paolone, J.-Y. Le Boudec LCA2, DESL - EPFL

Context

Synchrophasor measurements are vulnerable to timing

attacks:

V

System Model

- 1-ph direct-sequence model of a transmission network with **N** buses. ullet
- Only PMU measurements (voltage or current).

- $GPS \rightarrow Spoofing a GPS signal$
- PTP/White Rabbit \rightarrow Inserting an asymmetric delay unknown to the protocol.
- **A** Can we change the state of the network by just attacking the reference time of a subset of PMUs, undetectable by residual analysis?
- **M** measurements, measurement vector z in C^N .

Attack Model

- Attacker knows **Y** and **H** matrices.
- He manipulates p different time references with α_i different attack-angles (*i=1:p*).
- The attacker applies each α_i attack-angle to a subset of PMUs (A_i) . \bullet

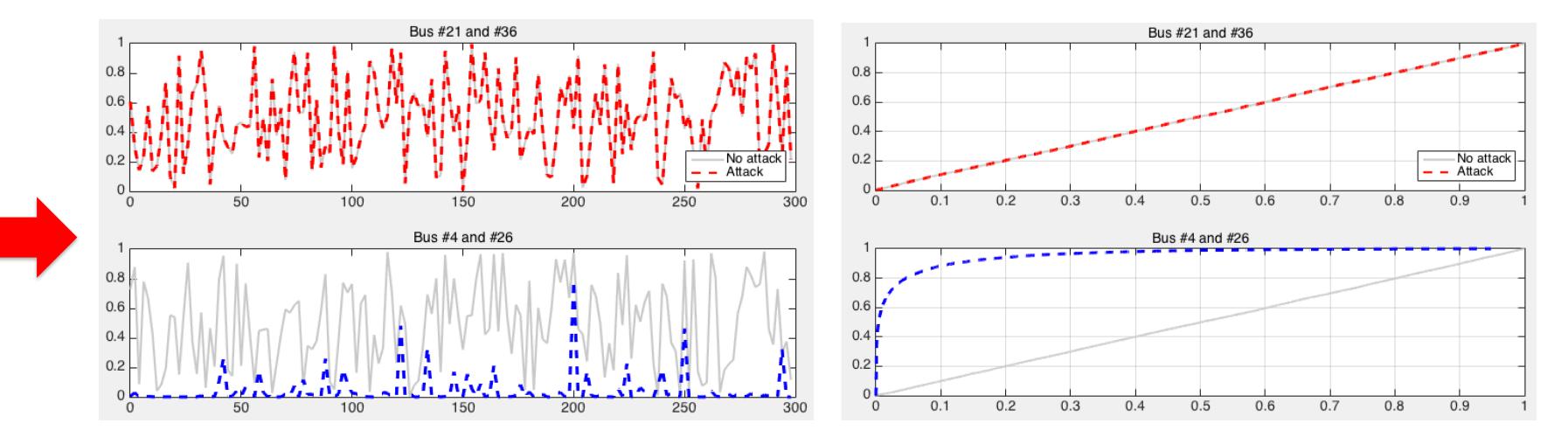
We use linear algebra with complex numbers to derive a closeform expression, and compute the attacking angles when p=2.

> $\alpha_1 = 2 \arg(W_{1,1} + W_{1,2}) \pmod{2\pi}$ $\alpha_2 = -2\arg(W_{1,2}) + 2\arg(W_{1,1} + W_{1,2}) \pmod{2\pi}$


- \checkmark The expression for α requires the W matrix to be low rank (rank-1).
- \checkmark We use the index of separation (*los*) of the W matrix to derive an easy-to-do test to find vulnerable spots to attack, regardless of the state of the grid $\text{IoS} = \frac{\lambda_{\max}}{\sum_{i} \lambda_{i}} = \frac{\Lambda_{1,1}}{\Lambda_{1,1} + \Lambda_{2,2}} \implies \text{IoS}^{*} = \frac{1}{2} + \frac{|f_{12}|}{2(f_{11}f_{22})^{\frac{1}{2}}} \implies f_{i,j} = \sum_{l,m} \sum_{n} \Psi_{l,i} \Psi_{m,j} \bar{F}_{n,l} F_{n,m}$

$$\begin{split} W_{i,j} &= \sum_{l,m,n \in \mathcal{M}} \Psi_{l,i} \Psi_{m,j} \bar{F}_{n,l} F_{n,m} \bar{z}_l z_m \\ \Psi_{m,i} &= 1 \text{ if } m \in \mathcal{A}_i \text{ and } \Psi_{m,i} = 0 \text{ otherwise} \\ F &\triangleq H (H^{\dagger} H)^{-1} H^{\dagger} - I \end{split}$$

Results


We applied *IoS** equation to all possible combination of attack locations to discover undetectable spots

Attack-location combinations						
Bus	Bus			Bus	Bus	
PMU1	PMU2	loS*		PMU1	PMU2	loS*
4	15	0.8437		21	24	1.0000
4	21	0.6613		21	26	0.8395
4	23	0.6613		21	35	1.0000
4	24	0.6613		21	36	1.0000
4	26	0.5282		23	24	1.0000
4	35	0.6613		23	26	0.8395
4	36	0.6613		23	35	1.0000
15	21	0.9516		23	36	1.0000
15	23	0.9516		24	26	0.8395
15	24	0.9516		24	35	1.0000
15	26	0.7669		24	36	1.0000
15	35	0.9516		26	35	0.8395
15	36	0.9516		26	36	0.8395
21	23	1.0000		35	36	1.0000

Undetectability

- We use state-of-the-art bad-data detection mechanisms (i.e., χ^2 test, Largest Normalized Residual Test) to prove undetectability.
- The residuals are statistically the same before and after the attack.

Comparison of p-values and CDFs of the p-values for the χ^2 test applied to two attack locations: ideal location (in red), and lowest *IoS**-performer location (in blue). Non-attacked case is illustrated in grey.

References

S. Barreto, M. Pignati, G. Dan, M. Paolone, J.-Y. Le Boudec, "Undetectable PMU Timing-Attack on Linear State-Estimation Using Rank-1 Approximation," submitted to IEEE Transactions on Smart Grids.

S. Barreto, A. Suresh, J.-Y. Le Boudec, "Cyber-attack on Packet-Based Time Synchronization Protocols: the Undetectable Delay Box", to be presented in I2MTC 2016, May 22-26, Taipei, Taiwan.