

swiss scientific initiative in health / security / environment systems

Efficient 3D US Beamformer: **Delay Calculation and Apodization**

UltrasoundToGo

FNSNF

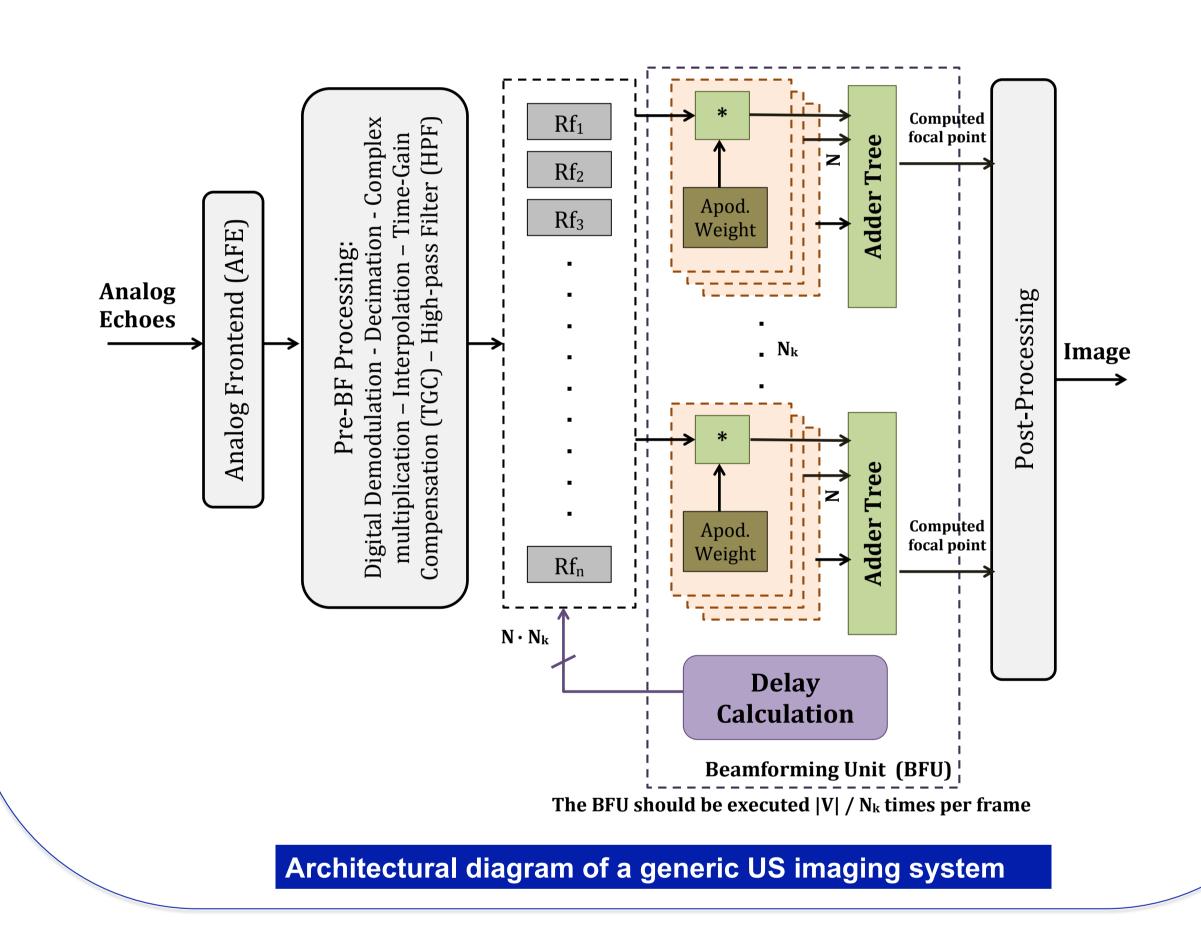
Aya Ibrahim^{*}, Federico Angiolini^{*+}, Marcel Arditi^{*+}, Jean-Philippe Thiran⁺, Giovanni De Micheli^{*}

* Integrated Systems Laboratory (LSI), Swiss Federal Institute of Technology (EPFL), Lausanne, Swizerland

* Signal Processing Laboratory (LTS5), Swiss Federal Institute of Technology (EPFL), Lausanne, Swizerland

A Medical ultrasound (US) imaging is one of the most common and advantageous diagnostic techniques that is used in a wide range of applications. ◆ Volumetric US imaging:

Motivation


♦ To beamform 128×128×1000 voxel volume at a reconstruction rate of 15 volume/s using a

RTD 2013

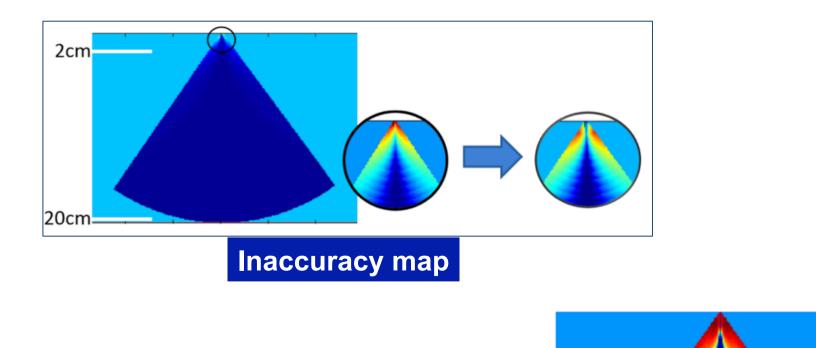
- Pros
- \diamond More expressive imaging in obstetrics.
- \diamond Better functional assessment in cardiology.
- \diamond Faster acquisition time by scanning the whole volume at once.
- \diamond Reduced dependency on trained sonographer.

 \diamond Expensive.

- Cons
- \diamond Bulky.
- \diamond Power hungry.
- UltrasoundToGo minimizes the cons of the 3D US imaging by demonstrating a high performance, portable, and low power signal processing platform.
- Integrated Systems Laboratory (LSI) focus:
 - ♦ Hardware design, FPGA-based demonstrator.
 - ♦ Matlab as a testing and investigation tool for different imaging modes, settings, and parameterizations.
- Beamforming is the core of the US imaging process, and it is the most computationally expensive stage.
- **Beamforming** is basically composed of two main processes;
 - \diamond Delay Calculation.
- \diamond Apodization.

- 100×100 element probe 2.5 Tera delay samples/s are required.
- ♦ There is no satisfactory answer for portable, low-power, low cost 3D US imaging system that has the **flexibility** to be up-scaled to exploit the **full-resolution probe readout**.
- Proposed Approach

+ 1.4X BRAM + 432Mb of UltraRaM) .. **Demo**


Under submission

Virtex 7 XC7VX1140T-2 Synthesis Results and Estimations for the TABLESTEER architecture.												
Mode			Supported	Logic	Memory	Regs	BRAM	DSP	Clock	Offchip	Thruput	Frame
			Channels	LUTs	LUTs	_				DRAM BW	_	Rate
			$N_x imes N_y$							(est.)		
3D-	l 4b -	200x8x8-1X	100×100	63%	0.1%	13%	5.7%	3.2%	372 MHz	32.5 GB/s	4.8 TD/s	29.0 fps
3D-	l4b-	50x16x16-1X	100×100	27%	0.1%	11%	1.7%	3.2%	328 MHz	28.7 GB/s	4.2 TD/s	25.4 fps
		100x8x16-1X		66%	0.2%	13%	3.1%	3.2%	337 MHz	<u>33.7 GB/s</u>	4.3 TD/s	26.3 fps
3D-	1 8b -	100x8x16-1X	100×100	70%	0.4%	14%	3.0%	3.2%	343 MHz	38.7 GB/s	4.4 TD/s	26.8 fps

Apodization

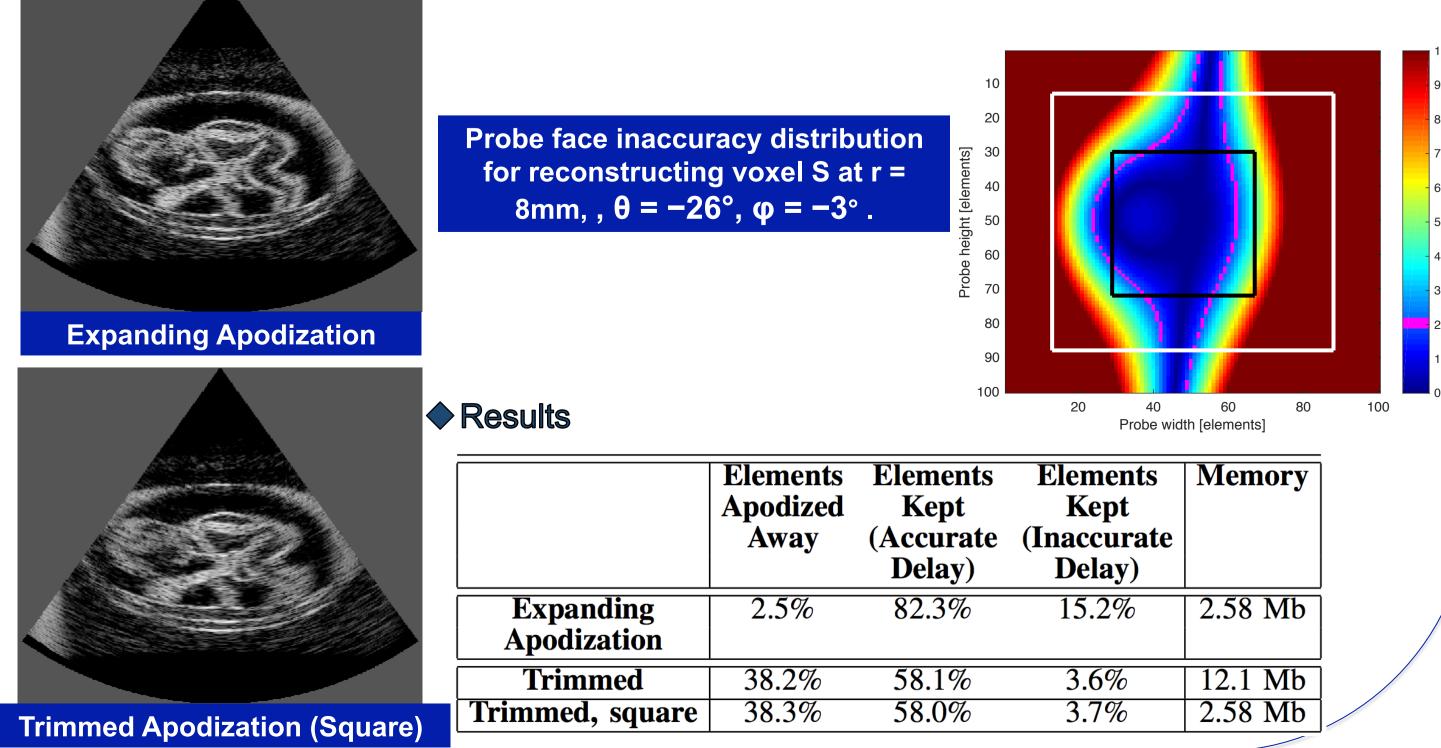
Motivation

♦ The approximation in the proposed delay calculation approach causes inaccuracy close to the probe surface and at broad angles (100 samples off).

Proposed Approach

- \diamond The proposed apodization scheme accounts for both;
 - a. The side lobes due to the physical characteristics of piezoelectric transducer (expanding typical apodization).
 - b. The further discarding of the elements that have sampling error above 2 samples.
- ♦ We studied the volume and derived for each voxel the typical expanding apodization window (white rectangle) and the set of elements that incurs delay inaccuracy of > 2 samples (region outside of the magenta contour).
- \diamond We built by regression an initial set of equations that define the apodization window (width, height, center abscissa, center ordinate) for different locations in the volume. This yields four equations as a function of r, θ , ϕ .
- \diamond We run a script that exhaustively analyzes the volume to drive refinements of these equations, in order to trim or expand the apodization windows to achieve better results (i.e. discarding as

 \diamond However, a tighter apodization reduces the inaccuracy to within the constructive interference threshold.


Percentage of elements to be apodized for bounding the inaccuracy to 2 delay samples off *

W, H, x_c, and y_c Equations For a Single Region Of The Volume

 $W(r,\phi,\theta) = 0.5\left(\frac{13r}{140} - \frac{\theta + 37}{3.5} - \frac{\phi + 37}{3.5} + 19\right) , \quad (140 \le r < 1500) \land (1 \le \theta \le 18) \land (19 \le \phi \le 37)$ $H(r,\phi,\theta) = 0.5\left(\frac{13r}{140} + \frac{\theta + 37}{3.5} + \frac{\phi + 37}{3.5}\right) , \quad (140 \le r < 1500) \land (1 \le \theta \le 18) \land (19 \le \phi \le 37)$ $x_c(r,\theta) = 49 - \frac{3r}{420} + \frac{\theta + 37}{10.5}$, $(140 \le r < 1500) \land (1 \le \theta \le 18)$ $y_c(r,\phi) = \begin{cases} 49 - \frac{3r}{420} + \frac{\phi+37}{10.5} &, (140 \le r < 1500) \land (19 \le \phi \le 33) \\ 51 &, (140 \le r < 1500) \land (34 \le \phi \le 37) \end{cases}$

* Based on a phase offset threshold of 90° between constructive and destructive interference, and considering that the sampling frequency is 8fc. Trimmed Apodization (Square)

many "inaccurate" elements as possible while keeping as many of the "accurate" as possible). \diamond The black rectangle shows the proposed apodization window.

