

Integrated Receiver and Synchronization IC for Wearable MRI

ETH

B. Sporrer, L. Wu, L. Bettini, T. Burger, Q. Huang

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Integrated Systems Laboratory – ETH Zurich

2 full receive chains on chip □ Total receiver noise figure below 2dB High dynamic range exceeding 74dB of SNR

Fig. 1: System overview of the wearable MRI implementation.

Small area

Reducing distortion of large in-bore magnetic fields to the receiver

□ **Minimum** noise figure

Additional receiver noise increases required scan time

Large dynamic range

Input signal levels from noise floor up to 74dB SNR encountered

High decoupling between coils

Avoiding noise coupling between channels

Low Power

Allows use of non-galvanic power distribution

- Adjustable gain allows to adopt to peak input level of every scan
- Configurability in input impedance, receive frequency and gain distribution allow the use of the receiver in multiple applications > The high upfront cost of integration is spread over multiple products

Fig. 2: Overview of the integrated receiver architecture.

Motivation & Requirements

Results

Wearable MRI

3 Clock **Generation**

Field strength 1.5T - 7T 64-300MHz Frequencies Gain 20...64 dB 350 mW (1.5/2.9 V) Power

- □ High quality system clock and on-board crystal oscillator available as clocking solution
- Generated LO is sent to the MRI system to allow for post-correction of the image

Chip-area	15 mm ²
Package-area	49 mm ²

Fig. 4: Performance of the receiver IC

□ Required performance for 3T/7T imaging reached, comparable to state-of-the-art rigid arrays

- □ Full receiver chain on 15mm² of silicon area, 49mm² total area of package, drastically decreasing board size
- Power consumption well below 1W per channel allows safe operation near patient
- Chip operation verified inside the MRI bore. Circuitry withstands high gradient/RF fields

via noisy fiber linke Low-jitter narrow-bandwidth charge-pump PLL assisted by harmonic enhanced VCO to achieve higher maximum SNR at high input frequencies

Fig. 3: Proposed In-bore Clocking System.

References:

[1] B. Dietrich, et al. "A stand-alone system for concurrent gradient and RF sequence monitoring," ISMRM 2012: 700. [2] N. De Zanche, et al. "Modular design of receiver coil arrays," NMR in Biomedicine 21.6 (2008): 644-654. [3] J. Rogin, et al. "A 1.5-V 45-mW direct-conversion WCDMA receiver IC in 0.13-µm CMOS," Solid-State Circuits, IEEE J. Solid-State Circuits, vol. 4, no. 12, pp. 2239-2248, Dec. 2003. [4] B. Sporrer, et al. "Integrated CMOS receiver for wearable coil arrays in MRI applications," Design, Automation & Test in Europe

(DATE), 2015, pp.1689,1694, 9-13 March 2015