

Improving the Self-Healing in Skin Sensor Networks

C. Rojas^{1,2}, D. Piguet¹, J.-D. Decotignie^{1,2} and J. Farserotu^{1,2}

Abstract

WiseSkin contains a Wireless Sensor Network that collects the tactile information over the artificial skin. As any wireless system, failures are possible and can result in the patient not feeling a region of the skin. The typical mechanisms for healing the network require an overhead in delay, energy and packet losses. This work proposes reducing the overhead through a novel mechanism for extracting link quality information from the packet repetitions used by preamble sampling MAC layers.

Introduction

WiseSkin [1] relies on a routing protocol to define the paths for the tactile information, which could break due to the failure of a node or changes of the link quality (LQ) when bending the skin. This would result on the patient not feeling a region of the skin (fig. 1).

State of the art routing protocols [2,3], relay on transmitting (TX) multiple beacons to gather information about the LQ and choose a new route, at the expense of delay, energy and packet losses, while the network adapts.

Contribution

This work aims to reduce the healing overhead through a novel approach for extracting useful statistics for link estimation (LE), such as the Packet Success Ratio (PSR) and the average LQ Indication (LQI), from a single packet in preamble sampling MAC protocols, such as WiseMAC [4] or ContikiMAC [5].

Figure 1. A wireless network can be self-healed at the expense of an overhead [6].

Design

This work proposes ContikiMAC-Repetitions (ContikiMAC-R), which is based on ContikiMAC (W₁) modified as follows:

- upon reception (RX) of a broadcast MAC repetition, the N2radio keeps listening during a time window W_m so that it listens to m repetitions (fig.2. A and B)
- ii) the broadcast TX must be extended by W_m to ensure that a receiver will always listen for m repetitions from each broadcast (fig.2. C)

Figure 2. LE from the MAC repetitions

Results

The simulations in COOJA [7] to estimate the overhead of ContikiMAC-R, without taking advantage of its LE information, show that ContikiMAC-R can perform a LE:

- with an overhead in RX energy that does not increase with the density of the network (fig. 3)
- without impacting the reliability
- with a negligible cost in TX energy

Conclusions

The results suggest that ContikiMAC-R:

- has an energy overhead that could be compensated with the savings of the routing, if it uses the new LE information to reduce the TX
- could reduce the delay, energy and packet losses during the "healing", by reducing the packets required for LE
- could result in a better accuracy of the LE due to the fine-grain estimation from the MAC repetitions, hence improving the reliability
- References: [1] C. Antfolk, V. Kopta, J. Farserotu, J.-D. Decotignie, and C. Enz, "The WiseSkin artificial skin for tactile prosthetics: A power budget investigation," in 2014 8th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 1-4. [2] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection tree protocol. In *Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems*, pages 1–14. ACM, 2009.
 - [3] A. Dunkels, F. Osterlind, and Z. He. An adaptive communication architecture for wireless sensor networks. In Proceedings of the 5th international conference on Embedded networked sensor systems 335–349. ACM, 2007. [4] A. El-Hoiydi and J.-D. Decotignie. Wisemac: An ultra low power mac protocol for multi-hop wireless sensor networks. In Algorithmic Aspects of Wireless Sensor Networks, pages 18–31. Springer, 2004.

[5] A. Dunkels. The contikimac radio duty cycling protocol. 2011. [6] PNGIMG. hands_PNG929.png [Image]. Retrieved from http://pngimg.com/upload/hands_PNG929.png

[7] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level sensor network simulation with cooja. In Local Computer Networks, Proceedings 2006 31st IEEE Conference on, pages 641–648.