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Abstract 
There is a need for providing sensory feedback for myoelectric prosthesis users. Providing tactile feedback can improve 
object manipulation abilities, enhance embodiment of myoelectric prosthetic users and help reduce phantom limb pain. Many 
amputees have maps of referred sensation from their missing hand on their residual limbs (phantom maps). This skin area 
can serve as a target for providing amputees with non-invasive tactile sensory feedback. One of the challenges of providing 
sensory feedback on the phantom map is to determine the accurate boundary of each phantom digit because the distribution 
of phantom map varies from person to person. In our work, automatic phantom map detection methods based on four 
decomposition support vector machine algorithms are proposed. The accuracies of proposed algorithms are presented and 
compared. The results have shown that one-vs-one support vector machine with majority-pooling sampling has the smallest 
error rate. 
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Introduction to Phantom Maps 

A phantom map is a region on the body that can evoke 
the sensation of the lost hand. Surveys have shown that 
80% to 90% of amputees develop a phantom map 
immediately after amputation [1]. Most of the time, the 
hand phantom maps are present on the faces or on the 
remaining stumps. 

                   

Automatic Phantom Map Detection 
We proposed an automatic phantom map detection method (Fig. 
2)  based on four decomposition support vector machine (SVM) 
algorithms: one-vs-one (OVO), one-vs-all (OVA), direct-acyclic-
graph (DAG), and binary-tree (BT). Three sampling methods: 
random sampling (RS), systematic sampling (SS), and majority 
pooling sampling (MP), were also tested on each algorithm. 

We have proposed four decomposition multiclass SVMs for automatic phantom map detection and compared the results. To 
our knowledge, this is the first attempt to apply machine learning algorithms to identify the distribution of phantom maps. The 
proposed methods provide reliable phantom map shape detection capabilities. They can also be used as a tool to help haptic 
feedback designers and to track the evolution  of phantom maps over time. 

Conclusion 
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Fig.3 The box plot of absolute error rate for four SVM 
algorithms using three sampling methods. Blue represents 
random sampling (RS). Red represents systematic 
sampling (SS). Green represents majority pooling (MP) 
sampling with 1×2 sampling size. 

Each algorithm and each 
sampling method were 
tested on 200 generated 
phantom map models. The 
sampling time for each 
method is 200 (8% 
sampling density).  
Their accuracies are 
compared. The results 
(Fig.3) show that the 
combination of OVO-SVM 
and MP has the smallest 
absolute error rate (less 
than 10%). 
 

(a) A complete 
phantom map with 5 
phantom fingers [3]. 

(b) An incomplete phantom 
map with shared phantom 
finger regions [4]. 

The phantom map distribution and sensitivity vary 
among individuals. To provide efficient stimulation 
patterns and take full advantage of the high spatial 
resolution provided by the phantom map, finding the 
hand phantom map distributions of individual amputees 
is therefore of great importance. 

Fig.1  Examples of real phantom maps. D1 to D5 
represent phantom thumb to phantom little finger, 
respectively.  

Pressure applied on 
one area of the 
phantom map give 
the sensation that it 
comes from a 
specific finger or 
area of the 
amputated hand. 
The shape of 
phantom maps can 
also change over 
time [2]. 

The dominant theory regarding phantom map formation 
is the reorganization of the cortical topography. In the 
Penfield map, the hand area is bordered by the upper 
arm and the face. When the hand is amputated, these 
two regions (upper arm and face) invade the area 
representing the hand, forming the phantom map [2]. 

Fig.2  Automatic phantom map detection method flow diagram using support vector machines (SVMs). D1 
to D5 represents phantom fingers from thumb to little finger. Blue stars represent sampling points. Each 
sampling point represents no phantom sensation , or D1 to D5. 
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