

Towards 1000x broadband amplification: A micromechanical amplifier for acoustic emission detection

Michelle Müller, Verena Maiwald, Miro Käch, Cosmin Roman, Christofer Hierold

Micro and Nanosystems, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland

Motivation

High-sensitivity MEMS acoustic emission sensors are in general band-limited to a single resonance line [1,2]

Results		N4	N8
Measurements shown were performed on the			
out-of-plane moving structures with a Laser			

- \rightarrow disadvantageous when detecting weak, broadband environmental vibrations
- Broadband mechanical amplifier for vibration sensing is proposed

m_n

k₃≷

k₂≶

m₁ k₁≹

m₂

Concept

The mechanical amplifier consists of concentrically arranged kn≹ masses with following design constraints (i = 1, ..., n):

 $\frac{k_i + k_{i+1}}{2} = \omega_0$

 m_i

 $\frac{m_{i-1}}{2} = 2$ m_i

Weak vibrations exciting the outer-most mass and traveling towards the center mass are amplified, if they are within the allowed frequency band.

Doppler Vibrometer.

Average amplification

Transfer function

amplifica-Average tion at each mass of N4 and N8 is shown. 3-times higher Α amplification can be observed the at center mass for N8.

Transfer functions of the central masses of N4 and N8 are given. N8 shows a higher amplificaaverage tion over a broader normalized band-

Design approaches

Out-of-plane and in-plane moving structures have been designed and fabricated. The out-of-plane structures were made in SOI with the springs in the thin device layer and the in-plane structures in Si.

Out-of-plane

Optical microscope partial top view of out-of-plane device.

In-plane

Optical microscope partial Displacements of each mass of N8 are given. Indicent mechanical vibration is shoaled in a tsunafashion tomi-like the center wards mass.

Outlook

Process and design studies to increase the amplification up to 1000x are ongoing: As an example, such a design based on two functional substrate layers may achieve a baseline-amplification of 500.

Sensitive axis

Device layer Spring Bulk IU UM Tilted SEM image of a double

top view of in-plane device. 300 µm Tilted SEM image of serpentine spring.

References

- W. Wu, D. W. Greve, and I. J. Oppenheim, "Characterization and noise analysis of capacitive MEMS [1] acoustic emission transducers," in Proceeding of IEEE Sensors Conference, 2007, pp. 1152-1155.
- H. Saboonchi and D. Ozevin, "MEMS acoustic emission transducers designed with high aspect ratio [2] geometry," Smart Mater. Struct., vol. 22, no. 9, Sep. 2013.

Acknowledgments

- Yunjia Li for helpful discussions and support in process development
- FIRST-CLA cleanroom staff of ETH Zürich as well as cleanroom staff at BRNC in Rüschlikon
- This research has been funded by Nano-Tera.ch, a program of the Swiss Confederation, evaluated by SNSF

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

clamped beam (spring).

micro and nanosystems