

swiss scientific initiative in health / security / environment systems

BOLT: A Stateful Processor Interconnect

Felix Sutton, Marco Zimmerling, Reto Da Forno, Roman Lim, Tonio Gsell, Georgia Giannopoulou, Federico Ferrari, Jan Beutel, and Lothar Thiele

ETH

Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland

> *Motivation*

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

• Traditional wireless sensor platforms enabled initial simple sense-and-send applications, e.g. environmental monitoring, on a single processor.

al Wiroloss Sonsor	Application &	Tightly
ai vviiteless selisui		

ghtly coupled application

 In today's distributed embedded system landscape, the ever increasing resource demands and the requirements for run-time adaptability and low power consumption encourage the adoption of multi-processor architectures.

• However, *interference on shared resources*, e.g., peripherals and memory, seriously hampers modularity, predictability and energy-proportional system performance.

> Interconnect Architecture

BOLT is the first processor interconnect that allows any two arbitrary processors to execute within their **own time, power and clock domains**, while supporting **predictable inter-processor communication** through asynchronous message passing.

Avoidance of resource interference

Paradigm shift towards compositional construction and predictable operation of heterogeneous ultra low-power

Tight bounding of unavoidable interference

✓ Formal specification of communication interface

wireless sensor platforms.

> Prototype Evaluation and Demonstration

BOLT in Action:

A wireless sensing application obliged to react to asynchronous sensor events on the application processor, and periodic network events on the communication processor:

(1) A sensor event is generated by pushing a button.

- (2) An interrupt on the application processor (A) triggers a wake-up from deep sleep mode. After processing the sensor event, an alarm
 - message is written to BOLT and A goes back to sleep mode.
- (3) As soon as the message has been successfully written to BOLT, the
 - IND line is asserted to notify the communication processor (C) of the pending message.
- (4) Processor C is duty-cycled and participates in periodic network communication. It only reads at most one message from BOLT before each communication round and indicates this with a flashing lamp.

Power Analysis:

- Ultra-low **1.2µW** @ **3.0V** power dissipation of BOLT in idle mode.
- Non-excessive 1.1mW @ 3.0V power dissipation during message operations.

signaling (logic analyzer)

power (multimeter)

• Elaborate application and communication processor selections will lead to optimal energy efficiency while sustaining reactivity.

