
Irreversibility index - new metric for stability
This index enables detecting periods when overall motion is not dominated by reversible 
thermo-elastic induced strains. It needs reversible and raw fracture deformation as input.

indexirrev.  = runmax7days(ydiff) - runmin7days(ydiff)       ydiff = |runmean14days(yraw) - runmean14days(ylrm )|

The output provides indications on rock wall stability and potential proxy of failure imminence.

Fig. 10: Irreversibility index for location mh03. Red bars indicate periods with reduced data.
•

The result in Fig. 10 orchestrates:
• every year an increase in irreversible motion during melting periods
• location, creep and fracture of ice might attenuate the motion during freezing periods
• thawing related irreversible offset is visible during summer periods
• the irreversible fracture deformation is caused by a decrease of the cohesion and friction along
• fracture due to changing conditions in shear zone, triggered by percolating water
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Quantify irreversible fracture deformation
Model temperature dependent fracture deformation (LRM)
-

As irreversible motion is suspected to occur prior
to global gravity-driven slope failures, we developed
a statistical model (linear regression model LRM)
for computing the reversible thermo-mechanical
induced fracture dynamics (Fig. 7) in steep perma- 
frost bedrock calibrated with field measurements.

We apply this linear regression model with rock 
temperature as an input to isolate the irreversible
deformation, which is the residual  ei,k of the model.
-
-

Model total  fracture deformation (LRM+)
-

Fig. 8: Calculation of the LRM+ trend
-

The Linear regression model plus (LRM+)
is a combination of LRM and irreversible
trend (                , Fig. 8). It is given by one
data point each winter (                       )         Fig. 9: LRM+ applied to the deformation perpendicular
and a defined winter period (              ).                     to fracture of location 3 for 7 years.

Fig. 7: Thermo-elastic induced strain
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Fig. 6:  Time series of the thermal conditions and fracture deformation at the field site Matterhorn
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•

• 3500 m a.s.l., NE-ridge,  comprises both sides of the ridge
• steep fractured gneiss, partially debris covered ledges
•

Fig. 4:  Nine locations with crackmeters and thermistors

ForaPot crackmeter
•

• potentiometric measurements
• very high accuracy (≤ 0.01 mm)
• temperature-compensated
• multiple axes possible

Fig. 5: Crackmeter installation
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Fig. 2: Conceptual model of permafrost affected slope instabilities in steep fractured bedrock.

Which processes cause fracture deformation?
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Fig. 3: In long term, initially reversible deformation of rock mass can get irreversible

Persistent thermo-elastic oscill-
ations of an initially stable rock 
mass, in combination with an 
increase of shear stress due to
accumulation/concentration of
stress at remaining rock bridges
or a decrease of shear resistance,
leads to irreversible surface 
displacement (unstable phase).

Surface displacements in steep fractured bedrock permafrost could reflect environmental
processes that are controlled by temporally varying environmental forcing. Fracture dynamics
consists of reversible and irreversible movement components resulting from a combination of
temporal varying drinving and resisting forces (Fig. 2).

From reversible to irreversible deformation

Main results
• statistical model describing the fracture deformation due to thermo-mechanical forcing and 

enabling the differentiation from the thawing-related creep

• irreversibility index is a proxy of impending rockfall activity revealing information of effective
 fracture deformation all year round, even if the total summer offset deformation is small

• irreversible enhanced fracture deformation during summer is triggered by percolating melt water,
 which changes the conditions in shear zone that leads to a decrease of friction along fracture

Motivation and problem statement
Assessing and anticipating rock wall instability is a challenging task, mainly because of the 
incomplete understanding of precursory signals and the inherent rock-(and ice-)mechanical
complexity of fractured inhomogeneous rock masses. 

Goal
Transfer theoretical and laboratory understanding of rock fatigue
and fracturing in cold environments to real conditions.
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Fig. 1: Matterhorn rockfall

Quantifying irreversible fracture deformation
in steep fractured bedrock permafrost at Matterhorn
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