
Towards Fast Remote Atomic Object Reads 
for In-Memory Rack-Scale Computing

Towards Efficient Hardware Support

Evaluation of Software Overhead

Software-Based Atomic Remote Object Reads

Rack-Scale Systems for Fast Remote Memory

Distributed In-Memory Processing Systems

Large-scale online services
Ø Vast datasets distributed across hundreds of servers
Ø Data kept memory-resident to meet tight latency goals
Ø Data organized in distributed object stores (e.g., Key-Value stores)

Frequent fine-grain communication
Ø Conventional networking: remote memory latency ~1000x of local
Ø Shrinks the benefit of keeping data in memory

RDMA one-sided operations for fast remote memory access
Ø Remote memory access within 10-20x of local
Ø But limited semantics: no atomicity beyond a single cache line

Current approach:  embedded metadata in every object
Ø FaRM: Per-cache-line object versions

L Need to extract application’s useful data
Ø Pilaf: Per-object CRC codes

L High CPU overhead (~10 cycles per byte)

Software checks only add minimal overhead to RDMA remote reads
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Scale-Out NUMA in a nutshell
Ø Lean user-level communication protocol
Ø Low-latency, high-bandwidth memory fabric
Ø Intra- but not inter-SoC coherence
Ø RDMA-like one-sided operations
Ø Remote Memory Controller (RMC)

Ø Integrated in SoC’s coherence domain

Remote memory access ≈ 4x local

Methodology
Ø Flexus full-system, cycle-accurate simulation
Ø Two directly attached 16core soNUMA nodes

FaRM benchmark: synchronous remote object reads
1. Remote object reads over soNUMA
2. Software-based object atomicity validation (per-cache-line versions)

Software overhead starts to perceivably affect end-to-end latency

Need to rely on software mechanisms for atomic object reads

Results
Ø Software atomicity check significant fraction of end-to-end latency
Ø Hardware support can reduce end-to-end latency by up to 50% 
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Insight: leverage hardware/software contract to simplify hardware
Ø Objects are well-defined software structures

Ø Object header with a lock or a version
Ø Object spans range of consecutive physical addresses
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Case study: Scale-Out NUMA

Emerging rack-scale systems
Ø Lean user-level protocols, tight integration, high-performance fabrics
Ø Bring remote memory access latency down to a bare minimum
Ø E.g., HP’s Moonshot & The Machine,  AMD SeaMicro, Oracle Exadata

Atomic Object Reads in Hardware: Design Space

Destination-based hardware for atomicity checks: Design Goals
Ø Maximum concurrency (across multiple object reads)
Ø Minimum latency (for a single object read)
Ø Minimum hardware complexity/cost (keep hardware simple)

Early conflict detection

Can leverage local 
coherence integration
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Hardware support for atomic object reads necessary for low latency

Where to provide object atomicity?

Destination-based designs are inherently superior

Intrusive data layout modifications Can keep native data layout

Limited to post-transfer checks

Late conflict detection

Our goal: Simple hardware for zero-overhead atomic object reads
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Example: Remote atomic object read in FaRM

Retry if read atomicity fails
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