
Towards Fast Remote Atomic Object Reads
for In-Memory Rack-Scale Computing

Towards Efficient Hardware Support

Evaluation of Software Overhead

Software-Based Atomic Remote Object Reads

Rack-Scale Systems for Fast Remote Memory

Distributed In-Memory Processing Systems

Large-scale online services
Ø Vast datasets distributed across hundreds of servers
Ø Data kept memory-resident to meet tight latency goals
Ø Data organized in distributed object stores (e.g., Key-Value stores)

Frequent fine-grain communication
Ø Conventional networking: remote memory latency ~1000x of local
Ø Shrinks the benefit of keeping data in memory

RDMA one-sided operations for fast remote memory access
Ø Remote memory access within 10-20x of local
Ø But limited semantics: no atomicity beyond a single cache line

Current approach: embedded metadata in every object
Ø FaRM: Per-cache-line object versions

L Need to extract application’s useful data
Ø Pilaf: Per-object CRC codes

L High CPU overhead (~10 cycles per byte)

Software checks only add minimal overhead to RDMA remote reads

Application

RMC

SoC

Rack
RMC

SoC

Scale-Out NUMA in a nutshell
Ø Lean user-level communication protocol
Ø Low-latency, high-bandwidth memory fabric
Ø Intra- but not inter-SoC coherence
Ø RDMA-like one-sided operations
Ø Remote Memory Controller (RMC)

Ø Integrated in SoC’s coherence domain

Remote memory access ≈ 4x local

Methodology
Ø Flexus full-system, cycle-accurate simulation
Ø Two directly attached 16core soNUMA nodes

FaRM benchmark: synchronous remote object reads
1. Remote object reads over soNUMA
2. Software-based object atomicity validation (per-cache-line versions)

Software overhead starts to perceivably affect end-to-end latency

Need to rely on software mechanisms for atomic object reads

Results
Ø Software atomicity check significant fraction of end-to-end latency
Ø Hardware support can reduce end-to-end latency by up to 50%

Alexandros Daglis,† Dmitrii Ustiugov,† Stanko Novakovic,† Babak Falsafi,† Boris Grot‡

†EcoCloud, EPFL ‡University of Edinburgh

Insight: leverage hardware/software contract to simplify hardware
Ø Objects are well-defined software structures

Ø Object header with a lock or a version
Ø Object spans range of consecutive physical addresses

DCSL

Case study: Scale-Out NUMA

Emerging rack-scale systems
Ø Lean user-level protocols, tight integration, high-performance fabrics
Ø Bring remote memory access latency down to a bare minimum
Ø E.g., HP’s Moonshot & The Machine, AMD SeaMicro, Oracle Exadata

Atomic Object Reads in Hardware: Design Space

Destination-based hardware for atomicity checks: Design Goals
Ø Maximum concurrency (across multiple object reads)
Ø Minimum latency (for a single object read)
Ø Minimum hardware complexity/cost (keep hardware simple)

Early conflict detection

Can leverage local
coherence integration

At the Source At the destination

Memory hierarchy

data replies

Object 0

…

M
M

U

requests

Invalidation

C
on

tr
ol

le
r

lo
gi

c

One-sided ops controller at destination

Inter-node
network

Remote reads

Lo
ca

l w
ri

te
s

Hardware support for atomic object reads necessary for low latency

Where to provide object atomicity?

Destination-based designs are inherently superior

Intrusive data layout modifications Can keep native data layout

Limited to post-transfer checks

Late conflict detection

Our goal: Simple hardware for zero-overhead atomic object reads

Object 1

Object N Invalidation

Address tracking

Versions
validation

cache line 145
Remote read FaRM object’s

layout
in memory

Server A’s Cache Server B’s Memory

cache line 245
cache line 346
cache line 446

cache line 146
cache line 246
cache line 346
cache line 446

Example: Remote atomic object read in FaRM

Retry if read atomicity fails

0.26 0.26 0.29 0.30 0.33 0.45 0.61
1.24 1.21 1.24 1.27 1.32 1.26 1.48

0.15 0.18 0.24 0.37 0.60 1.08
1.95

0

1

2

3

4

5

128 256 512 1024 2048 4096 8192

En
d-

to
-e

nd
 la

te
nc

y
(μ

s)

Object size (B)

transfer framework+application version stripping

